Perhaps the most obvious difference when it comes to reptiles vs amphibians? Oviparity (embryos found inside the eggs develop and eventually hatch outside the mothers body); some species exhibit viviparity (embryos are gestated inside the mothers body. The American toad, for example, undergoes a complete transformation into a terrestrial animal. Not so fast! Oviviparity (embryos develop inside the eggs but stay inside the mothers body until they are ready to be hatched). The simplest animals, such as the sponges (Porifera) and rotifers (Rotifera), do not need a circulatory system because diffusion allows adequate exchange of water, nutrients, and waste, as well as dissolved gases (figure a). As a result, a notochord is located at the spinal cords center, where it can move them around. Insects have three body segments a head, a thorax and an abdomen while arachnids have just two body parts a cephalothorax and an abdomen, the National Park Service reports. There is some mixing of the blood in the heart's ventricle, which reduces the efficiency of oxygenation. Air enters and leaves the tracheal system through the spiracles. When compared side by side, it becomes easy to distinguish the skin of a lizard from that of an amphibian. Once you have finished all the tasks, click Next below. Read More. There are many different types of amphibians, and their metamorphoses can take the form of different colors. The atrium collects blood that has returned from the body, while the ventricle pumps the blood to the gills where gas exchange occurs and the blood is re-oxygenated; this is called gill circulation. Toads must adapt to their new surroundings through this process, as they move from water to land. Both are cold-blooded or 'ectothermic,' which means their body temperatures adjust to the temperatures of their surroundings, rather than maintaining one set body temperature like humans do. Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. The blood then continues through the rest of the body before arriving back at the atrium; this is called systemic circulation. Encdysis is the process of molting a arthropods shell in order to accommodate a change in its body. The amphibians, on the other hand, are the only vertebrates that evolved from a family that was water-dwelling.
BioExplorer.net. But did you know that even in early 1800, there had already been studies showing that the two are of different classes? How to Compare a Frog . Who is Jason crabb mother and where is she? We and our partners use cookies to Store and/or access information on a device. The similarities between the wings of birds and insects are: Both the wings of birds and insects are intended for flying. Although both lay eggs, the similarities in reproduction end here for reptiles and amphibians! As compared to amphibians and lower animal forms, they have larger brains and thus better intellectual capacity. endobj
There are three major types of Amphibia in modern times. Skin! Frogs and snakes both have distinct skin patterns and scales, but they share many similarities as well. Morphological changes: what are 1 similarity and 1 difference for each of the following? is that insect is an arthropod in the class insecta, characterized by six legs, up to four wings, and a chitinous exoskeleton while amphibian is an animal of the amphibia; any four-legged vertebrate that does not have amniotic eggs, living both on land and in water. A reptile can be any type of animal, including a turtle, snake, lizard, alligator, or crocodile. Mammals are the only vertebrates that live on Earth. Of or relating to the amphibians Amphibia. Ectothermic (regulates body temperature depending on external sources). A reptile, such as an alligator, a crocodile, a turtle, a snake, or a lizard, can be classified as a reptile. Use this detailed PowerPoint to provide excellent information about different life cycles with quality photographs. Another key distinction in the reptiles vs amphibians conversation is that of reproduction. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739.
Birds And Insects: Similarities, Differences, And Much More - Helpful Hyena Usually have four equally sized limbs but some species (like snakes) have none. Amphibians are cold-blooded, have a backbone, can breathe air through their skin, can externally Mammals and amphibians have bilateral symmetry in the form of deuterostomes. AZ Animals is a new publication that is growing with the addition of animal experts, researchers, farmers, conservation advocates, writers, editors, and, of course, pet owners. The two atria receive blood from the two different circuits (the lungs and the systems). Listed below are these differences: After all seeing all differences, can you now accurately see the difference between amphibians and reptiles? The majority of all amphibians found in the United Kingdom are frogs and toads. Legal. Heres a quick quiz! Reptiles are thought to have evolved around 50 million years ago from amphibians, which may explain why they are similar to amphibians. Ogu{t NDG(~tWz2+;
|H"Mh !#aso"Mh 7,aNed &"|P;g#e$jrQeS6DWk_Q[idMb7*l
6 xq}aR !P&F_V Both the wings of birds and insects are two different types of analogous structures.
Comparing And Contrasting Stories With Similar Characters Teaching Similarities between amphibians and insects - YouTube Since then, it became clearer that they are different in many aspects. Amphibians have a three-chambered heart that has two atria and one ventricle rather than the two-chambered heart of fish (figure b). Arthropods typically undergo metamorphosis, in which they undergo radical changes in form as they develop from larvae into adults. Compare similarities and differences between the life cycles of amphibians and insects Grid View List View Presentation Video Unsigned Video Signed Video Some of our videos, including non-English language videos, do not have captions.
What are the similarities between insects and amphibians? Some insects utilize a tracheal system that transports oxygen from the external environment through openings called spiracles. They belong to different animal phyla because insects are arthropods and amphibians are chordates. Amphibian eggs are much softer, and almost gelatinous. eUnT^sFz@h91taOl6Ltnj9F7 l]I\>9dN=[xRpeYzypbChC:+[iE] In this lesson, we are going to learn about the differences in the life cycles of amphibians and insects. As opposed to amphibians, reptiles, which live primarily in their lungs, have dry, scaly skin that prevents them from drying out.
Amphibian vs Reptile - Difference and Comparison | Diffen Reptile Guide is also a Chewy affiliate partner. { "39.01:_Systems_of_Gas_Exchange_-_The_Respiratory_System_and_Direct_Diffusion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.
b__1]()", "39.02:_Systems_of_Gas_Exchange_-_Skin_Gills_and_Tracheal_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.03:_Systems_of_Gas_Exchange_-_Amphibian_and_Bird_Respiratory_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.04:_Systems_of_Gas_Exchange_-_Mammalian_Systems_and_Protective_Mechanisms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.05:_Gas_Exchange_across_Respiratory_Surfaces_-_Gas_Pressure_and_Respiration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.06:_Gas_Exchange_across_Respiratory_Surfaces_-_Basic_Principles_of_Gas_Exchange" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.07:_Gas_Exchange_across_Respiratory_Surfaces_-__Lung_Volumes_and_Capacities" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.08:_Gas_Exchange_across_Respiratory_Surfaces_-_Gas_Exchange_across_the_Alveoli" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.09:_Breathing_-_The_Mechanics_of_Human_Breathing" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.10:_Breathing_-_Types_of_Breathing" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.11:_Breathing_-_The_Work_of_Breathing" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.12:_Breathing_-_Dead_Space-_V_Q_Mismatch" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.13:_Transport_of_Gases_in_Human_Bodily_Fluids_-_Transport_of_Oxygen_in_the_Blood" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39.14:_Transport_of_Gases_in_Human_Bodily_Fluids_-_Transport_of_Carbon_Dioxide_in_the_Blood" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_The_Study_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_The_Chemical_Foundation_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Biological_Macromolecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Cell_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Structure_and_Function_of_Plasma_Membranes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Metabolism" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Cellular_Respiration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Photosynthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Cell_Communication" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Cell_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Meiosis_and_Sexual_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Mendel\'s_Experiments_and_Heredity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Modern_Understandings_of_Inheritance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_DNA_Structure_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Genes_and_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Gene_Expression" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Biotechnology_and_Genomics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Evolution_and_the_Origin_of_Species" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_The_Evolution_of_Populations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Phylogenies_and_the_History_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Viruses" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Prokaryotes-_Bacteria_and_Archaea" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Protists" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Fungi" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Seedless_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Seed_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_Introduction_to_Animal_Diversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Invertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "29:_Vertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "30:_Plant_Form_and_Physiology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "31:_Soil_and_Plant_Nutrition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32:_Plant_Reproductive_Development_and_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33:_The_Animal_Body-_Basic_Form_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "34:_Animal_Nutrition_and_the_Digestive_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "35:_The_Nervous_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "36:_Sensory_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "37:_The_Endocrine_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "38:_The_Musculoskeletal_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39:_The_Respiratory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40:_The_Circulatory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "41:_Osmotic_Regulation_and_the_Excretory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "42:_The_Immune_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "43:_Animal_Reproduction_and_Development" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "44:_Ecology_and_the_Biosphere" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "45:_Population_and_Community_Ecology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "46:_Ecosystems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "47:_Conservation_Biology_and_Biodiversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 39.2: Systems of Gas Exchange - Skin, Gills, and Tracheal Systems, [ "article:topic", "authorname:boundless", "showtoc:no", "license:ccbysa", "columns:two", "cssprint:dense", "licenseversion:40" ], https://bio.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fbio.libretexts.org%2FBookshelves%2FIntroductory_and_General_Biology%2FBook%253A_General_Biology_(Boundless)%2F39%253A_The_Respiratory_System%2F39.02%253A_Systems_of_Gas_Exchange_-_Skin_Gills_and_Tracheal_Systems, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 39.1: Systems of Gas Exchange - The Respiratory System and Direct Diffusion, 39.3: Systems of Gas Exchange - Amphibian and Bird Respiratory Systems, status page at https://status.libretexts.org, Describe how the skin, gills, and tracheal system are used in the process of respiration. Are insects. Amphibians Vs. Use watercolour pencils to create texture and colour in their drawing. Northern Mockingbirds have similar appearances and mannerisms to European Starlings. document.write( new Date().getFullYear() ); Because amphibians have moist, sticky skin, they are much more similar to insects than they are to reptiles. Unlike reptiles, amphibians do feel wet and slimy to the touch. Reptilian skin is covered in scales and/or scutes. Manage Settings In this lesson, we are going to learn about the differences in the life cycles of amphibians and insects. It is unique because its brain and how it moves are more similar to an amphibian instead of that of their own species. You see, while reptiles and amphibians have some similarities, their differences are in fact quite distinct. During the evolutionary process, reptiles evolved from amphibians and became the first true terrestrial vertebrates. There are many similarities between amphibians and arthropods, but there are also some significant differences. As such, their respiratory systems reflect their natural habitat and preferred environments. Lets explore the difference between amphibians and reptiles and also similarities between them in this article. Other animal groups, such as reptiles, amphibians, fish, and insects, have hearts that look a little different . A spider's body has two main sections, whereas that of an insect has three sections. Exostles, jointed legs, and segmented bodies are all characteristics of arthropods. A vehicle which can operate on land and water. Insect and amphibian lifecycles | Hamilton Trust Accessed January 18, 2017. Two other adaptations include a hole in the heart between the two ventricles, called the foramen of Panizza, which allows blood to move from one side of the heart to the other, and specialized connective tissue that slows the blood flow to the lungs. Both groups are also important in the food web, with amphibians serving as both predators and prey, and arthropods serving as both scavengers and decomposers. They typically have four limbs, although some species have forelimbs only, while others retain a vestigial tail from their larval stage. A salamander is a type of animal that can be found on land or in water. Adult amphibians eggs are squishy and see-through, whereas adult reptiles eggs are hard and protective. However, species like the Pixie Frog are unique because they. x[S9N>zaG**$$jaw? 40.3: Overview of the Circulatory System - Biology LibreTexts Gills are found in mollusks, annelids, and crustaceans. Toads and salamanders are also included. BioExplorer.net. Some reptiles (alligators and crocodiles) are the most primitive animals to exhibit a four-chambered heart. From where the eggs are laid to how theyre fertilized, reptiles and amphibian reproduction are quite different from one another. Water is used as a medium for the fertilization and development of eggs and larvae in biphasic life cycles for most fish. 4 0 obj
v&\7NpGMuiiF;L@wE*bn$sS{fn0nRg/U The males sperm is placed inside the females body. have a backbone, need air, need water, and reproduce Ranking of reptiles mammals amphibians insects fish and birds? OpenStax College, Biology. Another key distinction in the reptiles vs amphibians conversation is that of reproduction. Under Phylum Chordata and Subphylum Vertebrata. Exploring The Pros And Cons, How Many Dubia Roaches Should I Feed My Bearded Dragon? Gills are thin tissue filaments that are highly branched and folded. All Rights Reserved. { "40.01:_Overview_of_the_Circulatory_System_-_The_Role_of_the_Circulatory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.02:_Overview_of_the_Circulatory_System_-_Open_and_Closed_Circulatory_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.03:_Overview_of_the_Circulatory_System_-_Types_of_Circulatory_Systems_in_Animals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.04:_Components_of_the_Blood_-_The_Role_of_Blood_in_the_Body" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.05:_Components_of_the_Blood_-_Red_Blood_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.06:_Components_of_the_Blood_-_White_Blood_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.07:_Components_of_the_Blood_-_Platelets_and_Coagulation_Factors" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.08:_Components_of_the_Blood_-_Plasma_and_Serum" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.09:_Mammalian_Heart_and_Blood_Vessels_-_Structures_of_the_Heart" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.10:_Mammalian_Heart_and_Blood_Vessels_-_Arteries_Veins_and_Capillaries" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.11:_Mammalian_Heart_and_Blood_Vessels_-_The_Cardiac_Cycle" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.12:_Blood_Flow_and_Blood_Pressure_Regulation_-_Blood_Flow_Through_the_Body" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40.13:_Blood_Flow_and_Blood_Pressure_Regulation_-_Blood_Pressure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_The_Study_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_The_Chemical_Foundation_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Biological_Macromolecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Cell_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Structure_and_Function_of_Plasma_Membranes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Metabolism" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Cellular_Respiration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Photosynthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Cell_Communication" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Cell_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Meiosis_and_Sexual_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Mendel\'s_Experiments_and_Heredity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Modern_Understandings_of_Inheritance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_DNA_Structure_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Genes_and_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Gene_Expression" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Biotechnology_and_Genomics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Evolution_and_the_Origin_of_Species" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_The_Evolution_of_Populations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Phylogenies_and_the_History_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Viruses" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Prokaryotes-_Bacteria_and_Archaea" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Protists" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Fungi" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Seedless_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Seed_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_Introduction_to_Animal_Diversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Invertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "29:_Vertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "30:_Plant_Form_and_Physiology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "31:_Soil_and_Plant_Nutrition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32:_Plant_Reproductive_Development_and_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33:_The_Animal_Body-_Basic_Form_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "34:_Animal_Nutrition_and_the_Digestive_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "35:_The_Nervous_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "36:_Sensory_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "37:_The_Endocrine_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "38:_The_Musculoskeletal_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39:_The_Respiratory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40:_The_Circulatory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "41:_Osmotic_Regulation_and_the_Excretory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "42:_The_Immune_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "43:_Animal_Reproduction_and_Development" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "44:_Ecology_and_the_Biosphere" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "45:_Population_and_Community_Ecology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "46:_Ecosystems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "47:_Conservation_Biology_and_Biodiversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 40.3: Overview of the Circulatory System - Types of Circulatory Systems in Animals, [ "article:topic", "authorname:boundless", "showtoc:no", "license:ccbysa", "columns:two", "cssprint:dense", "licenseversion:40" ], https://bio.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fbio.libretexts.org%2FBookshelves%2FIntroductory_and_General_Biology%2FBook%253A_General_Biology_(Boundless)%2F40%253A_The_Circulatory_System%2F40.03%253A_Overview_of_the_Circulatory_System_-_Types_of_Circulatory_Systems_in_Animals, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 40.2: Overview of the Circulatory System - Open and Closed Circulatory Systems, 40.4: Components of the Blood - The Role of Blood in the Body, http://cnx.org/content/m44800/latestol11448/latest, http://en.wiktionary.org/wiki/respiration, http://cnx.org/content/m44800/lateste_40_00_01.jpg, http://cnx.org/content/m44801/latestol11448/latest, http://cnx.org/content/m44801/latest40_01_01ab.jpg, http://cnx.org/content/m44801/latest40_01_02ab.jpg, http://cnx.org/content/m44801/latest_01_03abcd.jpg, status page at https://status.libretexts.org, Describe how circulation differs between fish, amphibians, reptiles, birds, and mammals.